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EFFECT OF MEMORY ON DISSIPATIVE STRUCTURES FOPMING 

IN DISTRIBUTED KINETIC SYSTEMS 

V. M. Kudinov, V. A. Danilenko, 
and A. S. Makarenko 

UDC 532.59:536.7:541.121 

Integrodifferential equations which include memory effects are proposed for de- 
scribing the formation of dissipative structures in distributed kinetic systems. 

Quite thorough studies have been made in recent years concerning dissipative structures 
in distributed kinetic systems describable by parabolic equations of transfer [1-5], these 
equations being derived from the conditions of balance and from phenomenological laws which 
express instantaneous and local relations between thermodynamic fluxes and forces on the as- 
sumption that local equilibrium prevails in every small element of the medium. The local 
state of the medium is, moreover, completely described by an equation which does not contain 
any gradients. In most models the kinetic transfer coefficients are assumed to be constant 
[1-3]. Equations of the parabolic kind with constant transfer coefficients admit solutions 
(not physically realistic) which yield infinitely large fluxes at time zero [6-8]. Despite 
these singularities in the solutions, the latter rather accurately describe experimental 
data obtained in studies of structurization during low-intensity transient processes. Singu- 
larities in the solutions to parabolic equations cause difficulties of theoretical nature, 
however, in description of experimental data obtained about dissipative structures in dis- 
tributed active systems during fast nonequilibrium processes. In such processes the gra- 
dients are large and dispersion effects become significant so that it becomes necessary to 
include nonlocality and memory effects in the relations between thermodynamic fluxes and 
forces. It is then incorrect to describe the formation of structures with parabolic equa- 
tions derived in accordance with conventional nonequilibrium thermodynamics, and equations 
of far-from-equilibrium thermodynamics are required instead. 

Methods of nonlinear thermomechanics of continuous media yield the equations 

~ (o) a~z~ (x, t) + ~. (o) + = 
at ~ at .~ at 

0 

= k.  (o) v~z. (x, t) + i k; (o) v~z. (x, t - o) dO + 
o 

, (1) 

a2Tat ~(x' t) + ~ (o) aT a----if--.(x' t) + J~ ~, (o) aT (X,att -- o) do Cv 
o 

= k (0) v2T (x, t) + i k" (0) v*T (x, t - -  O) dO = 
O 

I 
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Fig. i. Space--time distribution of temperature (T) during com- 
bustion with evolution of dissipative structures from initial 
temperature fluctuation: (a) formation of two dissipative 
structures during decay of one initial temperature fluctuation 
[formation time t2' = 120; m = l = i0; Tn = T~ = 103; ~ = 0; i) t' = 0; 
2) t' = 0.19; 3) t' = 0.99; 4) t' = 1.99; 5) t' = 99.9; 6) t' = 
120]; (b) formation of structures in peaking and localization 
mode (only halves of symmetric profiles shown), solid lines 
representing structure with temperature profile whose half-width 
increases at first instant [m = Z = i0; rn = Tn' = 102; i) t' = 
13.9; 2) t' = 31.7; 3) t' = 35.7; 4) t' = 37.7; 5) t' = 39.7; 
6) t' = 41.7]; dash-dot lines representing structure with tem- 
perature profile whose half-width decreases with time [m = 7; 
Z = 2; T n = T n' = i0~; ~ = i00~; i') t' = 0.01; 2') t' = 
0.i; 3') t' = 0.2]; dash lines representing structure formed in 
process with infinitesimally short memory [m = 7; ~ = 2; Z n § 0; 

T n' § 0; ~ = 0; i") t' = 0.2; 2") t' = 0.3; 3") t' = 1.9; 4") 
t' = 2.9, 5") t' = 4.3]; memory length T n in units of time 

�9 ' a B ( O ) I k ( O ) ;  t '  = t i T ' ,  x '  = x l ( ~ ' a ) ~ / ~ ;  T'  = T/To. 

• .- 
d 

d t  

F n 

R N 

dt  

I~n(x, t - - 0 )  d 0 ) ,  n =  1, 2, . . . ,  N ,  r, s =  1, 2, . . . ,  R ,  

a .  (o) = a .  (0), a;~ (0) = a~ (01 

describing the structurization process with memory effects without convection [9].Thememory 
effects are described by kinetic kernels, the latter being time correlation functions for 
fluxes with various lengths of correlation decay time (various lengths of memory persistence). 
These kernels account only for the role of equilibration processes faster than the thermo- 
dynamic ones. Functions characterizing kernels in the phenomenological formulation are 
either determined experimentally or stipulated so as to satisfy thermodynamic constraints 
based on the Second Law [I0]. Functions describing kernels which depend on the intermolecu- 
far interaction potentials, on the temperature, the density, etc. can be derived directly 
by methods of statistical nonequilibrium thermodynamics [ii]. The appearance of integral 
terms in Eqs. (i) is a consequence of an abridged system description at the level of thermo- 
dynamic quantities. When the gradients of fluxes do not vary appreciably over the correla- 
tion decay time and distance, then the delay terms in integrodifferential Eqs. (i) become 
negligible and differential equations of transfer are obtained as a result. Differential 
equations of various kinds are obtained, depending on the form of functions which describe 
the kinetic kernels. With constant kinetic coefficients in kernels characterizing an in- 
finitesimally shortmemory, for instance, we have the parabolic equations on which the modern 
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theory of dissipative struetues has been constructed [1-5]. For kernels describing processes 
with infinitely long memory, on the other hand, Eqs. (i) yield wave equations. In the inter- 
mediate case with a memory of finite length in a process with Maxwell--Cattaneo kernels, fi- 
nally, Eqs. (i) yield telegrapher's equations: hyperbolic equations including the simplest 
form of memory, namely a finite velocity of matter propagation. 

The graph in Fig. 1 depicts results of numerical solution of Eqs. (i) and illustrates 
the formation of structures during combustion initiated by a temperature fluctuation in a 
distributed one-component (N = i) kinetic system. The profiles of initial fluctuations from 
which structures shown here evolve are the same. The system of Eqs. (i) was solved nu- 
merically for kernels and source functions 

k' ( 0 ) -  k ( O ) _  - - T n  exp ( - -  @ )  , ~' (0)= O, ~(0)= const > O, 

�9 o,0, ( o )  
a~(O)= , exp - -  , 

"17 n 

oo 

W; = T ~ (1 - -  T m-t) + ,i" a;~ (0) T' (0)dO, 
0 

~ : f : S - - - - -  1 

with initial and boundary conditions 

aT (x, O) = ,  (x), T (x, O) = q~ (x), 

T loa=o) (x ) ,  t > O ,  f~:{xC[--Xo, Xo]}, 

Ib (x - -  11)/(12 - -  ll), ll ~ x ~ 12, 
~p (x) = [b (l 3 - -  x)/(la - -  le), Ia ~ x ~ 13, 

(x) = Nq)(x), N = 100, o(x) = 0, b = 1, 

13-- 12 = 2 , 8 ,  12 - -  I1 = 1 . 4 .  

The algorithms of solution of Eqs. (i) and the difference scheme used for the solution, 
also a validation of these calculations, are all given in earlier reports [9, 12, 13]. 

The graph in Fig. la depicts dissipative structures evolving from one initial tempera- 
ture fluctuation. These structures spread in opposite directions (as indicated by arrows) 
and pulsate periodically. The length of time taken by formation of two structures depends on 
length T n' of the memory. Also the type and the characteristics of structures which form 
in the peaking and localization mode (Fig. ib) depend on length T n' of the memory (with ~, 
~, m, I remaining invariable). When the memory length is equal to t1': 

~'~ = tl = [(~' ~) + (% ~)1'/~ + [(~' ~) + (~: *') + 
lO(m--  1)/(l -k 1)§ r § 

+ (16/(m--1))(% q))(% ~)1I/2 
+ [(% ~ ) + ( %  ~)1~/~ , ~ > o ,  ~ > o ,  

(~, ~) = ~ ~ (x) ,p (x) dx, (,p, , )  = ~ ~ (~ ) ,  (x) d. ,  
f~ .q 

then  t h e  r e l e a s e  of  h e a t  d u r i n g  t h e  c o m b u s t i o n  p r o c e s s  becomes l o c a l i z e d  w i t h i n  a s t r u c t u r e  
whose h a l f - w i d t h  r ema ins  c o n s t a n t  i n  t ime .  The l e n g t h  of  t ime t 2 '  t a k e n  by f o r m a t i o n  of  
such  a s t r u c t u r e  depends  on Tn' , namely ,  

l 
[(m - -  1)/4] ~j (% r + -~- (% r 

2 ~  In 
t~ = t3,~ (0----) [(m - -  1)/4] "~ (% r [~ (0) (% q9 

2 

~ 0 ,  qo~O. 
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As the memory becomes infinitely long Tn v § ~, T n >> t1', the structure in the peaking 
and localization mode forms with a half-width which decreases in time and a length of time 
taken by its formation which does not depend on Tn': 

t~ = [4 (9, ~)l(m-- I)](9, ~), ~ > 0, ~ > 0. 

As the memory becomes shorter than t~', structures in the peaking mode appear in the medium 
with a combustion zone whose half-width increases at the first instant and which subsequently 
localizes within a definite width. 

Evidently, therefore, the conditions of structurization in the peaking and localization 
mode depend on the length of the memory. It is to be noted that the processes under con- 
sideration here occur in one-component systems according to Eqs. (i) with constant coeffi- 
cients. In earlier studies formation of structures in the peaking and localization mode in 
one-component systems was tracked on the basis of parabolic equations with power-law tem- 
perature-dependent transfer coefficients, considering in that case definite relations be- 
tween the power exponents of these coefficients and the power exponents in the source func- 
tion [4, 5]. 

When Eqs. (i) have Maxwell-~attaneo kernels and functions ~r' = T -- T 3, Wr' = --T + T 3, 
then they have soliton solutions for high-temperature combustion. When they have kernels 
corresponding to processes with infinitely long memory and functions W r' = $ exp (T), which 
characterize high-temperature ignition, then Eqs. (i) have three soliton solutions with one 
of them an unstable one. When 

= T' + [ a;~ (0) T z (0) dO, l > 3, 
O 

t h e n  Eqs. (1) d e s c r i b e  s e l f - l o c a l i z e d  long-wave  o s c i l l a t i o n s  d u r i n g  combus t ion .  Accord ing  
to today's prevailing theory of combustion and dissipative structures, based on parabolic 
equations of transfer, there should not exist any solitons [1-5]. Solutions to those para- 
bolic equations can be obtained from the solutions to Eqs. (i) by letting the length of the 
memory approach zero. 

NOTATION 

Zn, molar volume concentration of a substance; T, temperature of a substance; 8n(0) , 
ks(0), ars(0), ~n(0), 8(0), k(0), kinetic coefficients; k'(6), aks(8), 8n(0), k~(@), 8'(8), 
kinetic kernels of the memory; ~r, rate of a reaction referred to unit volume; 9ns, stoi- 
chiometric coefficient for n-kind particles in a chemical reaction S;Vn, chemicalpotential 
of n-kind particles; H n, partial molar enthalpy of substance n; ~(x, t), function of ex- 
ternal sources; e, t, time; x, space coordinate; ~n, Tn', relaxation times in Maxwell-- 
Cattaneo kernels; Cv,thermal capacity at constant volume; k, thermal conductivity in state 
of equilibrium; a, thermal diffusivity; D, diffusion coefficient; m, l, power exponents in 
the source function; ~(x), ~(x), functions characterizing the initial temperature distribu- 
tion; ~(x), function characterizing the temperature distribution over boundary ~ of region 

i. 

2. 

3. 

4. 

5. 

. 

7. 
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THERMAL STRESSES IN A HEAT-SENSITIVE SPHERE 

Yu. M. Kolyano and I. N. Makhorkin UDC 539.377 

A solution is obtained for the quasistatic problem of thermoelasticity for a heat- 
sensitive sphere heated by a heat flux. Thermal stresses are investigated in a 
steel sphere. 

Let us examine an isotropic elastic sphere of radius R, free from external load but sub- 
jected to sudden heating by a heat flux of constant density q. The initial temperature of 
the sphere is zero. All the physicomechanical characteristics of the material except the 
coefficient ~ are functions of the temperature. 

For many materials [i] the temperature dependences of the heat conduction At(t) and 
volume specific heat Cv(t) coefficients are identical in nature, whereupon their coefficient 
of thermal diffusivity is a = It(t)/Cv(t) = const. Then by using the Kirchhoff variable 

t* 

8" (t*) = f ~ (D a~ (1) 
0 

the  n o n l i n e a r  h e a t - c o n d u c t i o n  problem i s  l i n e a r i z e d .  We consequen t ly  a r r i v e  at  a boundary-  
va lue  problem for  the Ki rchhof f  v a r i a b l e :  

0 (p~ 88* ] _  08* 
p-2..~_p __OF / OFo ' (2) 

OS_* J 08* Fo= 1 @ io=0 = 0, --O~- = KiS+(Fo), (3) 

8" (p, 0) = 0, (4) 

whose solution has the form [2] 

8 * = K i [  3Fo 3--5P~ ~ 2sin~nP3 e x p ( - - ~  F o ) ] ,  (5) 
L l0 r~=l ~np COS ~ j 

where t* = t/to; p = r/R; Fo = a~IR2; It(t*) = It(t)IX~~ Ki = qRII~~ is the Kirpichev 
L 

criterion; ~n are the roots of the characteristic equation tan ~ = ~. 

Knowing the expression for the Kirchhoff variable and the temperature dependence of the 
heat-conduction coefficient, we can determine the temperature field in the sphere from the 
relationship (i). 
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